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ENTRANCE OF A BODY WITH A LIFTING FORCE

AND A HEAT-CONDUCTING SURFACE INTO THE EARTH’S ATMOSPHERE

UDC 519.86:533.6.011A. I. Borodin

The problem of gliding descent of a smooth blunted body possessing a lifting force and a heat-
conducting surface in the Earth’s atmosphere is solved. The descent trajectory is represented not
only by the altitude and velocity as functions of the flight time but also by angles of attack and
sideslip varying with time. Three-dimensional equations of a parabolized viscous shock layer for a
multispecies mixture of gases are solved jointly with a three-dimensional equation of unsteady heat
conduction in the solid phase.

Introduction. In an actual flight, because of intense interaction of the gas flow and the shell of a flying
vehicle, the temperature of the body surface and the convective heat flux toward it are functions of the flight time.
For this reason, it is necessary to consider the interrelated transfer processes in the gaseous and solid phases [1]. In
addition, when bodies move in the atmosphere with high supersonic velocities, gas heating in the subsurface layer
initiates various physicochemical processes, which should be taken into account to obtain a realistic physical flow
pattern. Determination of heat-transfer characteristics on the surface of a descending body should be based on the
solution of differential equations of external gas dynamics in multispecies reacting gas mixtures together with the
heat-conduction equation in the protective shell of this body [2].

In the present paper, the dissociating air flow around spatial blunted bodies is considered within the frame-
work of the parabolized viscous shock layer model, which is a modification of the general theory of the viscous shock
layer [3] proposed initially for uniform gas flows [4, 5] and then for a multispecies mixture of gases [6]. Multispecies
diffusion and homogeneous chemical reactions, including dissociation-recombination and exchange reactions, are
considered. The generalized Rankine–Hugoniot conditions are set on the shock wave, and conditions taking into
account heterogeneous catalytical reactions are imposed on the body surface. Viscous shock layer equations are
solved jointly with the spatial equation of heat conduction inside the coating. The problem in such an adjoint
formulation was numerically studied for the case of motion of an elliptic paraboloid along the reentry trajectory
into the Earth’s atmosphere.

Adjoint heat transfer within the framework of the viscous shock layer theory was previously taken into
account in analysis of the flow around the stagnation point [7], axisymmetric flows [8], and spatial flows with a fixed
angle of attack (there is a plane of symmetry in the flow) [9].

1. Formulation of the Problem. For a numerical solution of the problem of a hypersonic flow of a
chemically nonequilibrium gas mixture around a blunted body at angles of attack and sideslip, we use a curved
coordinate system xi fitted to the body surface: the x3 axis is directed along the normal to the body, and the x1

and x2 axes are located on the body surface. We write the equations of the spatial parabolized viscous shock layer,
which describe the flow between the body surface and detached shock wave, taking into account nonequilibrium
chemical reactions and multispecies diffusion and ignoring thermal diffusion, diffusion thermoeffect, and pressure
diffusion, in dimensionless variables in the chosen coordinate system [6]:

Dα(ρuα
√
g/g(αα) ) +

√
g D3(ρu3) = 0; (1)

ρ(Duα +Aαβδu
βuδ) = −gαβ√g(αα)DβP +D3((µ/Re)D3u

α); (2)
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Here Di ≡ ∂/∂xi, D∗ ≡ (uα/√g(αα))Dα, D ≡ D∗ + u3D3, and Re = ρ∞V∞L/µ(T0) (T0 = 104 K).
System (1)–(8) is closed by the Stefan–Maxwell relations
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Here V∞ui are the physical components of the velocity vector along the corresponding coordinate axes, ρ∞V 2
∞P ,

ρ∞ρ, and T0T are, respectively, the pressure, density, and temperature of the gas mixture consisting of N chemical
components, µ(T0)µ, (V 2

∞/(2T0))cp, and σ are the viscosity, specific heat capacity, and Prandtl number, respectively,
ci, mi, 0.5V 2

∞hi, (V∞/(2T0))cpi, V∞ρ∞Ii, and V∞ρ∞ẇi/L are, respectively, the mass concentration, molecular
weight, specific enthalpy, specific heat capacity, normal component of the diffusion-flux vector, and mass-formation
rate of the ith component as a result of chemical reactions, Dij and Scij are binary coefficients of diffusion and
Schmidt number, respectively, RG = V 2

∞R/T0 is the universal gas constant, gαβ and gαβ are the covariant and
contravariant components of the first quadratic form of the body surface, g = g11g22 − g2

12, and Akij are known
functions of the shape of the body [10]. Summation is performed over repeated subscripts that are not enclosed in
brackets. The Latin subscripts take values 1, 2, and 3 (except for specially indicated cases); the Greek sub- and
superscripts equal 1 or 2. All linear dimensions are normalized to the characteristic linear size L. The subscripts
w, ∞, and s refer to quantities on the body surface, in the free stream, and behind the shock wave.

The equations of the viscous shock layer are solved jointly with the heat-conduction equation in the same
curved coordinate system xi:

∂TB
∂t

=
æ
√
g

(
D1

g22D1TB − g12D2TB√
g

+D2
g11D2TB − g12D1TB√

g
+D3

D3TB√
g

)
. (10)

Here æ = λBt
∗/(ρBcpBL2) and t is the time normalized to the characteristic flight time t∗; the subscript B refers

to the parameters of the solid phase (body).
The system of differential equations of the viscous shock layer (1)–(6) and the heat-conduction equation (10)

are solved under the following boundary conditions:
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— on the shock wave,

x3 = x3
s(x

1, x2): ρ(u3 −D∗x3) = u3
∞, u3

∞(uα − uα∞) = (µ/Re)D3u
α,

P = (u3
∞)2, u3

∞(ci − ci∞) + Ii = 0 (i = 1, . . . , N − 1),

µcp
σu3
∞Re

D3T =
N∑
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ci∞(hi − hi∞)− (u3
∞)2 −Bαβ(uα − uα∞)(uβ − uβ∞);

(11)

— at the interface between the solid and gaseous phases,

x3 = 0: ui = 0, Ii = ṙi (i = 1, . . . , N − 1), T = TB ,

µcp
σRe

D3T −
N∑
i=1

hiIi = ΛD3TB + ΓT 4
B ;

(12)

— at the inner side of the coating,

x3 = −l/L: D3TB = 0. (13)

Here ρ∞V∞ṙi is the rate of formation of the ith component due to heterogeneous reactions, Λ = λB/(ρ∞V∞cp∞L),
Γ = 2εBσBT 4

0 /(ρ∞V
3
∞), εB is the emissivity of the surface, σB is the Stefan–Boltzmann constant, and l is the

coating thickness.
The initial condition for Eq. (10) is the initial temperature of the shell. The dissociating air in the shock

layer is represented as a perfect mixture of five chemical components (O2, N2, NO, O, and N), in which dissociation–
recombination and exchange reactions proceed. The dependences of the rate constants of direct and reverse reactions
on temperature were determined in accordance with [11]. The transfer coefficients and thermodynamic functions
were calculated by formulas from [12–16].

The atmosphere is assumed to be isothermal and have a density distribution ρ∞ [g/cm3] over the
height H [km]: ρ∞ = 1.225 · 10−3 exp (−0.142H). It is assumed that heterogeneous catalytical reactions are
first-order reactions: ṙi = −ρkwici (i ≡ O, N, and NO), where V∞kwi is the rate constant of heterogeneous recom-
bination. Two models of catalytical interaction between the gas and the solid surface were considered: 1) kwi = 0
(neutral surface); 2) kwi =∞ (ideally catalytical surface).

2. Method of the Solution of Viscous Shock Layer Equations. To find the numerical solution of the
problem in the gas phase on the body surface, we choose a polar coordinate system with the origin at the stagnation
point [17], which is degenerate at this point. At the stagnation point, the normal to the body surface coincides
with the free-stream direction, which is completely determined by the angles of attack α and sideslip β. One family
of coordinate lines (x1 = const) consists of concentric “circles,” and the other (x2 = const) is a bunch of “beams”
with the center in the origin.

Taking into account the special features of the chosen coordinate system on the surface, we pass to new
variables
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1
∆

x3∫
0
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s∫

0
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2
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∗
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√
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1
(ξ1)α

∂P

∂ξα
, Xi =

Ii
∆

(i = 1, . . . , N),

which allows us to resolve singularities at the stagnation point.
In the new variables, the continuity equation (1) is satisfied identically; the entire system of differential

equations (2)–(8) with the boundary conditions (11) and (12) in these variables can be found in [6].
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The Stefan–Maxwell relations are written in the form [18]

Xi = αi
∂ci
∂ζ

+ βici (i = 1, . . . , N − 1). (14)

To determine the flux Xi, the corresponding continuity equation for the ith component is integrated; to calculate
the concentration ci, this equation with substitution of Xi from Eq. (14) is used. This approach allows one to find
the unknown concentrations of the gases in the mixture without prior resolution of the Stefan–Boltzmann relations
with respect to diffusion fluxes.

Thus, the resultant system of equations that describes the flow of the mixture in the shock layer contains
two third-order equations along the transverse coordinate ζ with respect to the stream functions fα, a second-
order equation for the temperature θ, a second-order equation for the x3 coordinate (which is a consequence of the
momentum equation in projection onto the normal to the body surface, continuity equation, and equation of state),
two first-order equations for longitudinal components of the pressure gradient Pα, N − 1 first-order equations for
diffuse fluxes Xi, and N − 1 second-order equations for concentrations ci.

The normal component of the velocity vector u3 and the density ρ are determined by the formulas

u3 = −A ∂x3

∂ζ
+ (ξ1)2−α ∂fα

∂ζ

∂x3

∂ξα
, ρ =

∆ξ1

√
g

(∂x3

∂ζ

)−1

.

For numerical integration of the second- and third-order differential equations with respect to the transverse
coordinate ζ, an implicit finite-difference scheme was used, which had an order of approximation O(δξ1)+O(δξ2)2 +
O(δζ)4. This scheme is a generalization of the scheme of [19] to the three-dimensional case and employs a variable
step along the ζ coordinate. In the convective operator, the derivatives with respect to the marching coordinate ξ1

are replaced by upstream differences, and the derivatives with respect to the circumferential coordinate ξ2 are
approximated by central differences on the basis of a solution obtained at the previous iteration on the current
“circumference” ξ1 + δξ1 = const.

The first-order equations are integrated by Simpson’s method with a fourth-order accuracy in terms of ζ.
The value of ∆(ξ1, ξ2) is determined after the calculation of the entire “circumference” at each iteration by

the method of cyclic sweep [20] and, thus, is a matching function of the solutions obtained at all computational
points of the current “circumference.”

Since the coordinate system (ξ1, ξ2) introduced on the body surface degenerates at the stagnation point, a
non-degenerate curved coordinate system was used to solve the initial equations at this point. The solution obtained
was then recalculated to the coordinate system (ξ1, ξ2, ζ) using algebraic formulas from [17] and was assumed to be
the initial solution for calculation of the entire domain.

To increase the calculation accuracy at high Reynolds numbers, a difference grid nonuniform along the ζ
coordinate (condensing toward the body surface) was used. In this case, to identify a thin boundary layer near the
body surface, an iterative process of grid adaptation was used, which ensured an approximately uniform increment of
the sought functions at each step along the ζ coordinate in solving the viscous shock layer equations at the stagnation
point. The distribution of nodes along ζ obtained at the stagnation point was used for all other calculation nodes
of the wetted surface.

3. Method of the Solution of the Heat-Conduction Equation. In the numerical solution of the
problem of heat propagation inside the body, we used the same coordinate system as in calculations of the gas
phase, but the system was fixed and had the origin in the center of the body (at zero incidence, the coordinate
systems along the surface for the gas phase and heat propagation inside the body coincide). This choice of the
coordinate system is conditioned by the fact that the domains of integration along the body surface coincide; in
addition, Eq. (10) is significantly simplified due to the orthogonality of the coordinate system (g12 = 0). Taking
into account the special features at the origin, the heat-conduction equation acquired the form

1
æ

√
g

ξ

∂T

∂t
− ∂

∂ξ

(g22√
g

)1
ξ

∂T

∂ξ
− g22

ξ
√
g

∂2T

∂ξ2
− ∂

∂η

(g11ξ√
g

) 1
ξ2

∂T

∂η
− ξg11√

g

1
ξ2

∂2T

∂η2
−
√
g

ξ

∂2T

∂ζ2
= 0. (15)

The notations ξ ≡ x1, η ≡ x2, ζ ≡ x3, and T ≡ TB are used here for convenience. In the origin (ξ = 0), this
equation degenerates into
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g

ξ

∂2T

∂ζ2
= 0. (16)

It follows from analysis of Eq. (16) that, for ξ = 0, the derivatives ∂T/∂ξ and ∂2T/∂ξ2 are equal to zero.
The heat-conduction equation (15) was solved using an implicit three-step scheme of the method of al-

ternating directions, which was proposed by Douglas [21] (see also [22]). The scheme has the order of accuracy
O(δt2, δξ2, δη2, δζ2) and is unconditionally stable.

At the first step, all derivative with respect to ξ in Eq. (15) were approximated by central differences,
and derivatives along two remaining directions were calculated previously. At both boundaries of the domain of
integration, zero second derivatives were prescribed along the marching coordinate ξ. The solution of the thus-
obtained system of three-point equations with respect to the temperature T was found by the sweep method [20];
after that, the derivatives ∂T/∂ξ and ∂2T/∂ξ2 were calculated using the same central differences.

At the second step, the derivatives with respect to η were approximated by central differences, the condition
of periodicity of temperature along this variable being taken into account. The derivatives with respect to ξ and ζ

are known. The resultant system of three-point equations with respect to the function T/ξ2 (which is important
for stability of sweep in the vicinity of the origin) was solved by the method of cyclic sweep [20]. Based on the
temperature found, the derivatives ∂T/∂η and ∂2T/∂η2 were calculated.

At the third step, the temperature was finally determined using the same implicit finite-difference scheme
of the fourth-order approximation with respect to the variable ζ [19] but on a constant uniform grid with known
derivatives along two remaining spatial variables and specified first derivatives with respect to ζ at the boundaries.

Owing to the adopted assumption on quasi-steadiness of the processes in the gas phase, the generic algorithm
of solving the adjoint problem is as follows: for a surface temperature known at the initial time, all parameters
of the flow of the mixture are calculated with a given accuracy within the entire region between the body surface
and the shock-wave surface. After that, the body-temperature gradient along the normal coordinate is determined
from the heat-flux balance equation at the interface between the gaseous and solid media; this gradient is the
boundary condition for the heat-conduction equation. When the temperature field inside the shell with a new value
of temperature is calculated, the parameters in the gaseous medium are determined. The process is repeated, and
the input parameters of the flow in the viscous shock layer (height H, flight velocity V∞, angles of attack and
sideslip, and, as a consequence, the flow parameters at infinity) are calculated for the next current point of the
trajectory.

The special feature of the numerical method proposed for solving the adjoint problem is the fact that its
implementation does not require the presence of planes of symmetry in the flow (therefore, it is possible to perform
calculations for the general case of the flow around bodies with heat-conducting surfaces at angles of attack and
sideslip), and the calculation of friction and heat-transfer coefficients on the body surface does not require numerical
differentiation of velocity and temperature profiles across the shock layer. The calculations showed that this method
is stable, economic and allows solving the adjoint problem in a wide range of governing parameters corresponding
to a given flight trajectory.

4. Results. The reentry body was assumed to be an elliptic paraboloid, which is described by the following
equation in the Cartesian coordinate system:

2z = (x/b)2 + (y/c)2, b = 1, c = 1.5811. (17)

The ratio of the main curvatures at the apex of this paraboloid is k = 0.4. The characteristic linear size in
the problem is the least radius of the main curvatures at this point L = 0.5 m. The emissivity of the surface
is εB = 0.85. The materials used for the heat-protective coating were graphite [ρBcpB = 1.6 J/(K · cm3) and
λB = 0.88 W/(K · cm)] and quartz [ρBcpB = 1.77 J/(K · cm3) and λB = 0.046 W/(K · cm)]. The initial temperature
of the coating was 300 K.

To confirm the reliability of the results described below, we solved the problem of the flow around this
paraboloid under conditions of its motion along the reentry trajectory into the Earth’s atmosphere, which was
borrowed from [23]. The temperatures of the heat-conducting surface (graphite coating was 2 cm thick, and heat
overflow along the coating was neglected) at the paraboloid apex, which were obtained in the present work, coincided
with data presented in [9] for both models of heterogeneous catalytical reactions. Under the same conditions, the
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TABLE 1

Number of control point H, km V , m/sec t, sec α, deg β, deg

1 122.0 7810 0 34 30
2 99.7 7840 190 34 24
3 76.1 7680 430 34 70
4 65.3 6240 900 32 53
5 48.4 2724 1470 30 10
6 46.8 2440 1525 30 17
7 27.4 985 1790 15 29
8 21.8 463 1905 10 −10
9 21.4 454 1909 10 −10

Fig. 1

effect of the step of integration in time was investigated, and it was found that the numerical results almost coincide
for δt = 10 and 1 sec. In all variants described below, the time step was 10 sec.

In the present work, we considered the descent of paraboloid (17) along the trajectory borrowed from [24];
its parameters are listed in Table 1.

The computational domain is a space enclosed between the shock-wave surface, the internal surface of the
paraboloid shell, and the surface formed by the normals outgoing from the paraboloid cross section by the plane
z = 0.8. This plane is chosen so that the stagnation point is inside the computational domain along the entire
trajectory (i.e., for given α and β). Thus, the calculation of the flow of a multispecies mixture near the surface of
an elliptic paraboloid in the chosen curved coordinate system begins from the stagnation point with the coordinate
ξ1 = 0 and ends in a given cross section that coincides with the coordinate line ξ1 = 1; and the solution of the heat-
conduction equation in the shell lies in the coordinate system (ξ, η, ζ), where ξ = 0 corresponds to the paraboloid
apex, and the boundary ξ = 1 on the body surface coincides with the above-mentioned coordinate line ξ1 = 1.

The purpose of the present numerical experiment is to evaluate the influence of heat overflow in longitudinal
directions on heat-transfer characteristics for different materials of the heat-protective coating.

We consider the case, where the body is exposed to a counterflow at zero incidence. Then, the problem
has two planes of symmetry, which coincide with the planes of symmetry of the paraboloid itself, and the curved
coordinate systems on the body surface for the gaseous (ξ1, ξ2) and solid (ξ, η) phases coincide. Therefore, there
is no need in interpolation of the boundary conditions from one difference grid to the other. This simplification of
the problem allows also a significant decrease in the computation time. Calculation results for an ideally catalytical
surface (model 2) are given below. In this case, as is shown by calculations and as follows from [9], all the results
may be considered as the upper estimates for different heterogeneous catalytical reactions.

Figure 1 shows the temperature at the stagnation point at the outer (curves 1) and inner (curves 2) surfaces
of the protective coating as a function of the flight time for graphite (Fig. 1a) and quartz (Fig. 1b) coatings 10 cm
thick. The dashed and solid curves correspond to calculations performed with longitudinal heat overflow ignored
and taken into account, respectively. For the graphite coating, the character of all dependences is similar: a clear
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Fig. 2

maximum is observed, which is shifted in time and decreases by 250 K if heat overflow is taken into account. For
the quartz coating, the picture is different. The dependence of the temperature of the outer side of the shell in
both cases have maxima at the same point of the trajectory (H = 67.5 km and V = 7150 m/sec) with a difference
of 35 K. At the same time, the temperature of the inner surface is a monotonically increasing function, and the
influence of the heat-overflow process in longitudinal directions is more significant (the difference in temperature is
greater than 400 K).

We introduce the notion of the maximum temperature of the heat-protective shell of the body during the
flight time tk: Tmax = max

06t6tk
TB(t, ξ, η, ζ). Figure 2 shows the distribution of the maximum temperature of the

outer (curves 1 and 2) and inner (curves 1′ and 2′) surfaces of the heat-protective quartz shell (l = 10 cm) during
1760 sec of motion of the paraboloid along a given trajectory with respect to the z coordinate along the planes of
symmetry [x = 0 (curves 1 and 1 ′) and y = 0 (curves 2 and 2′)]. As in Fig. 1, the solid and dashed cures correspond
to calculations with heat overflow along the body surface being taken into account and ignored, respectively. For all
the distributions, the maximum is at the stagnation point (paraboloid apex). As in the problem for the stagnation
point, the neglect of heat overflow in the longitudinal and circumferential directions leads to overprediction of the
surface temperature in the entire computational domain.

We consider a more complicated problem — trajectorial motion of the paraboloid with regard for angles of
attack and sideslip varying with time (see Table 1). We consider a quartz shell 10 cm thick. In this case, there is no
symmetry in the problem, and the stagnation point changes its position on the body surface with changing angles α
and β. The essentially three-dimensional character of the problem becomes more complicated if heat overflow along
the longitudinal directions in the heat-conducting shell is taken into account.

The isolines of the surface temperature of the paraboloid (in Kelvin) in the (x, y) plane at different times
of descent along the trajectory are plotted in Fig. 3. The diverging “beams” are the coordinate lines ξ2 = 0.5πk
(k = 0, . . . , 3), the point of their intersection (ξ1 = 0) is the stagnation point, and the ellipse is the boundary of
the computational domain (ξ1 = 1, i.e., z = 0.8). The paraboloid apex with the coordinates (0, 0) is located at the
center of the ellipse. It is seen in Fig. 3 that the stagnation point is in the zone of elevated temperatures, though
it is not the point of the maximum surface temperature. The zone itself is shifted over the body surface. Its shape
and temperature change thereby.

Figure 4 shows the distribution of the limiting surface temperature of the paraboloid Tmax reached during
1560 sec of flight for the cases where heat overflow along the body is taken into account (Fig. 4a) and where the
heat propagates only in the direction normal to the surface (Fig. 4b). It is seen that the zone with temperatures
higher than 1600 K is significantly smaller in the first case. The region in Fig. 4a with T > 1400 K was formed at
t = 1070 sec and the region with T < 1400 K was formed at t = 1300 sec.

Figure 5 shows the distribution of the limiting temperature Tmax of the inner surface of the shell for the
same time and the same conditions as in Fig. 4. In Fig. 5, the influence of longitudinal heat overflow is even
more pronounced: the positions of the zones of elevated temperatures do not coincide. In addition, the maximum
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Fig. 3

Fig. 4

Fig. 5

temperature in Fig. 5a does not exceed 525 K, whereas Tmax > 900 K and the temperature is higher than 500 K
almost within the entire zone in Fig. 5b. In contrast to the distribution of the maximum temperature of the outer
surface of the shell, the pattern shown in Fig. 5 has been formed by the last moment of the flight time considered
in the present work.

On the basis of numerous calculations and results presented in this work, we may conclude that taking into
account of the lift-to-drag ratio of the descending vehicle and three-dimensional processes of heat propagation in
its protective shell changes significantly the distribution of heat loads on the protected surface of the body, which
should be taken into account in designing reentry vehicles.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98-01-00298).
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